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Abstrad. Expressions for moments of the spectral density distribution of a system 
described by a mn-syh"ric N-particle Hamiltonian are derived. In particular, this kind 
of Hamiltonian may represent N coupled oscillators; then its spectrum models the 
vibrational spectrum of a molecule. It is assumed that the Hamiltonian is defined in a 
finite-dimensional space formed by products of orthogonal eigenstates of some one-body 
Hamiltonians. Possible applications of the formalism are briefly discussed. 

1. Introduction 

Two essentially different strategies may be applied to study eigenvalue spectra of 
nuclear, atomic, or molecular Hamiltonians. In the first one, individual eigenvalues 
are evaluated, usually by diagonalization of a matrix representing the Hamiltonian in 
a model space. This approach is most useful when one is interested in a few, well 
characterized energy levels. However, it becomes prohibitively inefficient when the 
number of levels is very large. In the second strategy, global characteristics of the 
spectra are derived, usually from a knowledge of the appropriate distribution 
moments. The set of eigenvalues is here treated as a statistical ensemble. In thii case, 
the larger is the ensemble, the more precise is the treatment. The resulting approach is 
often referred to as sfuristicul spectroscopy (French 1974, French and Kota 1982). 

The origin of statistical spectroscopy may be traced back to the early works of 
Bethe (1936) and van Lier and Uhlenbeck (1937). For several decades it was mainly 
applied in nuclear physics. Early works in this field have been collected and reviewed 
by Porter (1965). An excellent review was published in 1981 by Brody et al. Among 
more recent works one should mention contributions by Nomura (1985, 1986, 1987), 
where further references may be found. 

The earliest statistical studies of atomic spectra were performed by Rosenzweig 
and Porter (1960). Reviews on this subject have recently been published by Bauche et 
a1 (1988), Bauche and Bauche-Arnoult (1990) and Karazija (1991). Interesting 
applications of the energy level density distribution moments in the crystal field theory 
has recently been presented by Yeung and Newman (1985, 1986). 
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Much less explored, though very interesting, are statistical properties of vibratio- 
nal spectra of molecules. The area of highly excited energy levels, including transition 
from regular to chaotic behaviours, energy exchange between coupled vibrational- 
modes in reaction paths, specific features of the nuclear motions near the avoided or 
allowed crossing regions of the potential energy hypersurfaces, may all be addressed 
using the statistical approach. The earliest statistical analyses of molecular vibrational 
spectra were published only a decade ago by Haller et a1 (1983). Since then, statistical 
studies of the spectra of coupled oscillators have contributed to understanding 
relationships between classical chaotic systems and their quantum analogues (Zi- 
mermann et a1 1987, 1988 and references therein), allowed a determination of the 
effects of molecular complexity on the structure of vibrational spectra (Cimiraglia et a1 
1988), explored how dynamical symmetries iduence spacings between vibrational 
levels (Benjamin et a1 1984), just to mention a few directions of this fast developing 
area. 

Ensembles of the vibrational energy levels used in statistical studies may be 
obtained either from experimental measurements or diagonalizing some model 
Hamiltonian matrices. This restricts the applicability of the approach. In the first case 
by limited availability of the experimental data, in the second, by numerical com- 
plexity of the problem. In the model Hamiltonian calculations the molecule is usually 
represented as a set of coupled harmonic or Morse oscillators. Taking several 
eigenvalues for each local mode (one local mode associated with a bond) one easily 
arrives at hundreds of thousands of eigenvalues for a molecule. 

In this paper another method is advocated. The method is based on analysing 
theoretically derived distribution moments of the quantities considered. A similar 
approach has been commonly used in statistical studies of both atomic and nuclear 
spectra (cf Brody er a1 1981, French and Kota 1982, Nomura 1985, 1986, Bauche and 
Bauche-Amoult 1990). General formulae for moments of spectral density distribu- 
tions of the nuclear energy levels were derived by Ginocchio (1973). In the case of 
systems of N electrons coupled to given values of the total spin explicit expressions 
were given by Kanvowski and Bancewicz (1987), Rudzikajte and Karazija (1989) and 
Karazija (1991). In all these works systems of identical particles, either fermions or 
bosons, have been considered. Therefore the operators considered were symmetric in 
the coordinates of the particles. 

In the present paper expressions for moments of the spectral density distribution 
of a non-symmetric N-particle Hamiltonian containing one- and two-body terms are 
derived. A Hamiltonian of this form may describe a system of coupled oscillators. 
Then the one-body operators correspond to individual bonds and the two-body ones 
to the interactions between them. The interaction terms are defined as bilinear forms 
of one-body operators. It is assumed that the Hamiltonian is defined in a finite- 
dimensional model space spanned by a set of orthogonal products of eigenfunctions of 
the one-body operators. In the final formulae, the N-body moments are expressed as 
linear combinations of products of the primitive one-body moments. 

Among various areas where the moments are useful, one should mention two, 
being of some spectroscopic importance. First, one can generate individual energy 
levels from moments of the spectral density distributions. This approach was orig- 
inally proposed and applied to studying nuclear spectra by Ratcliff (1971). In the case 
of atoms it has been implemented by Bancewicz and Kanvowski (1987, 1991). The 
second possibility is to generate envelopes of spectra. This approach has been 
formulated and successfully applied in atomic spectroscopy by Bauche et al(1988) and 
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Bauche-Amoult and Bauche (1992). Its implementation in the case of molecular 
bands composed of densely packed vibronic transitions was never done, though would 
be particularly attractive. 

2. The Hamiltonian 

Let us consider a system described by a Hamiltonian 

H =  Hb + Hi 

where 
U 

HA= h;(k) 
ksl 

represents the one-body part, and 

k,f 

describes interactions. It is assumed that the one-body Hamiltonians {h;}p=, may all be 
different. In the interaction terms AM= Ark and Tu= Tu are numerical constants while 
f ; (k)  and g ; ( k )  are two different one-body operators. For simplicity we assume that 
r,= 0, since generalization of the results to the case of arbitrary Tkris rather easy. The 
Hamiltonian may also be represented in a more compact form: 

N 

where AkkwLk(k, k )=h; (k )  and wL,(k, I)=fL(k)f;(l). 
If the one-body Hamiltonians are chosen as 

where mk is the reduced mass of the bond k,  V(k )  is the bond potential (as, for 
example, the harmonic oscillator or the Morse potential) and if f ’ (k ) /g ‘ (k )  are 
coordinatehomentum operators (or their powers), then the total Hamiltonian (1) 
describes the vibrational structure of a molecule containing N bonds (Cimiraglia et a1 
1988). 

We assume that h; have finite and discrete spectra, i.e. 

h ~ ~ k p ) = e ~ k ~ k p )  p = 1,2, . . . , dk k = l , 2 , .  . . , N (6) 

with (k,(k,) = dpq. If the one-body Hamiltonians have infinite spectra (as, for example, 
the harmonic oscillators) or contain continuum (as. for example, the Morse oscil- 
lators) then hi are their projections to appropriate finite-dimensional spaces. If the 
N-body Hamiltonian is designed to describe a real molecule, the projection is aimed at 
removing the ‘unphysical’ part of the spectrum. 
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The total Hamiltonian is defined in an N-body model space being a direct product 
of the one-body spaces. The basis vectors of the model space are defined as 

N IU=n lkP(LJ.  (7) 
A - 1  

Since, for a given k, p ( L )  = 1,2, . . . , dk,  there are 
N 

D = f l d k  
X = l  

different vectors IL). Orthonoxmality of lk,) implies orthonormality of the vectors 
JL). Therefore D is the dimension of the N-body space. It is easy to see that vectors 
(15) are eigenvectors of Hi: 

HAIL) = EIIL) (9) 
where 

h= 1 

It is convenient to redefine the one-body operators so that their average values 
vanish. Let us denote 

h&k) = hL(k) -li; (11) 
where 

is the average value of h; in its eigenspace. From (6) we obtain 

Then the total Hamiltonian reads 

H= E’ + Ho + Hr 
where 
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is the average energy of the system, Tr Q=& (LIQIL) denotes a trace in the N-body 
space 

and 

As can be easily seen 

k=1 k>I 

The spectrum of h" is shifted relatively to that of h' by a constant value 

p = l ,  2 , .  . . , dk (22) 

E , = E t - E  L =  I, 2,  . . . , D (23) 

&;k &;k - A; 

and the same applies to the spectra of Hand H': 

where E'' and E are, respectively, eigenvalues of h" and H .  The average values of h; 
and f k  vanish. Therefore also the average values of hh, Ho and Hl are equal to zero. By 
choosing the origin of the energy scale so that I?' = 0, the spectra of H and H' become 
identical. Then, using the traceless operators does not lead to any loss of generality, 
while it substantially simplifies the algebra. Therefore only the traceless operators are 
considered further in this paper. 

3. Formulation of the Problem 

The (qr)th moment of the one-body spectral density distribution of hkfk is defined as 

The operators hk andfx, in general, do  not commute. Therefore there are 

different products containing q times hk and r timesf,. Let b&=, denote the set of 
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one-particle moments corresponding to all these products. The average over this set is 
denoted 

Of special importance are the spectral density distribution moments of hk: 

Similarly 

The qth moment of the N-body Hamiltonian is 

1 
Mq =z Tr(Hq). 

In particular 

M, = E.  (29) 

The density of a discrete spectrum may be exactly represented by a discrete ' 
n o r m a l i d  frequency function p ( E ) .  The corresponding moments M, and the average 
energy E may then be expressed as 

Mq = Eqp(E) dE. 
- D I  

E = M , =  Ep(E)dE. Ir. 
If the distribution moments are known, 2 discrete frequency function may be 
approximated by a continuous frequency function p ( E )  chosen so that a given number 
of the lowest moments calculated with both the functions are the same (for details see 
Kendall 1943). Therefore calculation of the moments directly, using (24)-(28), allows 
the evaluation of general properties of the spectrum without the need to determine 
individual energy levels. As we shall see, the moments may be calculated without any 
explicit evaluation of the Hamiltonian matrix elements. 
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The qth moment of the Hamiltonian spectral density distribution, under assumption 
that E=O, is given by 

r D  

or equivalently by 
p-I s 

j = l  ,=I 

M,=M$')+M!)+X {M&i}, 

where 

s=(;) 

and 

M $ )  = - 1 Tr(HI) D i = O , l .  

(33) 

(34) 

(35) 

The terms M?) and M$" represent, respectivt , , contributions e to the one- and the 
two-particle operators, while Mf'& describe the effects of coupling between them. 
The symbol {M,q',-,}S., denotes the set of N-particle moments of all products in which 
Ha and HI appear, respectively, j and q - j  times (cf equation (25)). 

If the Hamiltonian is expressed as in (4), then 

where the operators w(cf (4)) are defined in terms of h and f so that &,=O for all pairs 
k, 1. 

In order to obtain general expressions for moments of the spectral density 
distributions, first a system of non-interacting particles, described by one-body 
operators H,, will be considered. Then, the approach will be extended to the general 
case of interacting particles. 

4.1. The one-partick operators 

The spectral density distribution moments of Ho may be written as 

The last equation may alternatively be expressed in the form 
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where {mi}El =0,1,. . . , q and the sum is extended over ail compositions C(q) of q ,  
i.e. over all collections ml, +, . . , mN such that 

inl + m2 + . . . + tnN= q .  (39) 

Let us note that zeros are included in the compositions. Using (7) and (26) we obtain 

where the moments correspond to h rather than to h' or h" andp,= 1. 
The polynomial coefficients in (40) do not depend upon the order of {mj}El, i.e. 

they are labelled by the partitions z(q) of q rather than by the compositions. 
Therefore it is convenient to transform (40) so that the terms corresponding to the 
same partition are put together. Let 

n(q) = [np@ . . 1 nt;l] (41) 

u = x  vi (42) 

be a partition of q consisting of 
2 

is I 

parts n,, n,, . , . , n, with n; being repeated ui times and 

n l > n z > .  . . > n , > l .  

It is clear that 

and (40) may be rewritten as 

with 

The sum is extended over all different sets {U,} ,  {uJ, . . . , {uA} yield by then partition. 
The symbol 

in (45) means that Z, extends over the set {ui} of U, integers, 1 G h S N ,  and {U,,} n {uh} = 
0 for all j ,  f j?. 

In the majority of applications most important are several lowest moments, 
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determined by terms associated with a few types of partitions. For example, if 
n(q) = [ql, then 

Y 

If n(q) consists of two different parts, i.e. if n(q)= [nm] then 
W 

.U&]= 2 P"O(illPmo(i2).  (47) 
i,#h 

If n(q) = [n"], then 
N 

WA1= pnO(il)PnO(Q . . .p,,0(im). (48) 
; 1 > q . ,  . >i, 

Since pct0(k) = 0, (k= 1,2, . . . . , N), only these partitions in which nA# 1 contribute to 
(44) and (45). 

In particular, for the lowest moments (qS6)  we get 

Mio) = 4;) (49) 

M$') = A[!] (50) 

Mio) = A(:] + 6.ufih (51) 

MSo) = A@] + lo&& (52) 
Mio) = A$] + 15&& + 20.Uf~~1 + 90&/:]1. (53) 

3.3. The two-particle operators 

Introducing a cumulative index 
k(k - 1) 

2 
J = -  + l  k s l  

Hamiltonian H may be expressed as (cf. (4)) 
R 

(54) 

where R = N ( N +  1)/2. Similarly to the case of the one-particle operators, (36) may be 
written in the form 

where 
R 

A =  fl AY> 
I=I 

and for the time being commutation of the operators w has been assumed. 

(57) 
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In order to express the N-particle moments in terms of the one-particle ones, we 
have to collect together those one-particle operators which depend upon the same 
variable. Since 

Akkwkdk, k )  hdk)  (58) 

and 

w d k ,  0 =fdk) f rO forkZI  (59) 

we have to this end split the cumulative index J and reorder the one-particle 
operators. As can easily be checked 

h&) = Arw, withr=n(n+ 1)D. (60) 

Each fn is associated with N- 1 different operators 0,: wnl, wnz, . . . , wntln, 
wnt2”, . . . , oNn. Let us denote J(n)i ,  i= 1,2 , .  . . , N- 1, the sequence of J corres- 
ponding to a givenf,. Then, 

n(n - 1)/2 + i if 1 G i ~n - 1 
if n Si 5 N -  1 

and (56) reads 

where 

A = . . . Amn-I 
N , N - I  

and 

N- 1 

with m[i]-mi For example, if N = 5 ,  then r = l ,  3, 6, 10, 15 and 

tl =m2+ m,+m,+m,, 

t2 =m2 + m5 + m8 + m12 

t3=m, + m,+ m9 + mu 

t4= m, + m8+ m9+ mId 

t5 = ml, + m12 + mI3 + ml+ 
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Equation (62), as in the case of the one-particle operators, may be simplified by 
changing the sum over compositions to a sum over partitions: 

In particular 

with 

N 

Let us note that, opposite to the case of the one-particle operators, moments 4 
corresponding to partitions containing 1, in general do not vanish. 

The formulae in which only ph and pno appear, are not affected by the assumption 
that the operators hk and fk commute. In  particular, if z(q) = [q], then C(q) consists of 
compositions for which one element in the set is equal to q while the remaining 
ones are equal to zero. Therefore 

In general, if the operators do not commute, pm(i)  should be replaced byP,(i). 
In particular, in (71) 
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has to replace pu(i) and in Eq. (72) pIl(i), p&] have to replace pl l ( i ) ,  pll(j]. In the 
case of z= [mn], m#n,  equation (62) yields 

where 2' means that all the indices in the multiple sums are different. A similar 
formula is obtained for n=[nZ]: 

N 

4 2 1  = $11 + ~ % d i ) p d j 3  
i#/ 

N N  

N N  

+ E' A ~ A ~ p ~ ( k ) ~ ~ ( ~ ) p o " ( ~ ~ ~ ( j ]  
k>i  f>j  

Explicit expressions for & corresponding to other partitions may be derived in an 
analogous way. 

The one-particle moments can easily be evaluated either analytically (in the case of 
the harmon; or Morse oscillators) or numerically. In effect, the energy level density 
distributions may be approximated, without much effort, by several-moment fre- 
quency functions. Practical applications of this formalism will be presented in a 
forthcoming paper. 
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